Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Login

Register Now

Welcome to All Test Answers

Key Concepts in Computer Science – Assignment 1

1. [1 mark] What is Log4(1024)? Show how you determine the result.
πŸπŸŽπŸπŸ’= πŸ’πŸ“
Log4(1024) = π‹π¨π πŸ’(πŸ’πŸ“)=πŸ“Β· π‹π¨π πŸ’(πŸ’) = 5

2. [2 marks] Given π‹π¨π πŸ”(𝒙)=𝟐 solve for x. Show how you determine the result.
π‹π¨π πŸ”(𝒙)=𝟐 ⟹ πŸ”πŸ=𝒙 βŸΉπ’™=πŸ‘πŸ” This is derived from the definition of logarithm.

3. [3 marks] Find the tightest integer upper bound and lower bound for x if 𝒙= π‹π¨π πŸ(𝟐𝟐). Justify your answer.
πŸπŸ”<𝟐𝟐< πŸ‘πŸ ⟹ πŸπŸ’< 𝟐𝟐< πŸπŸ“ ⟹ π‹π¨π πŸ(πŸπŸ’)< π‹π¨π πŸ(𝟐𝟐)< π‹π¨π πŸ(πŸπŸ“) βŸΉπŸ’< π‹π¨π πŸ(𝟐𝟐)< 5 ⟹ πŸ’<𝒙 < 5

4. [2 marks] For question 3, write the upper bound and lower bound of x using interval notation.
x ∈ (4,5)

5. [2 marks] Find answer for the following floor and ceiling functions.
⌊12.3βŒ‹ = 12
⌈-78.999βŒ‰ = -78
⌊-0.0001βŒ‹ = -1
⌊10001.001βŒ‹ = 10001

6. [3 marks] Solve for x if 2×2-3x-2 = 0 using the formula for the roots of a quadratic equation.
ax2 + bx + c = 0
x = βˆ’b Β± √b2 – 4ac2a
a = 2, b = -3, c = -2
x = βˆ’(βˆ’3) Β± √(βˆ’3)2 – (4Γ—2Γ—(-2))2Γ—2= 3 Β± √9 + 164= 3 Β± √254= 3 Β± 54
x = 2 and x = -0.5 (note: x has two values)

7. [3 marks] Solve this inequality 12 < -2x + 4 and write it using interval notations for x.
12 < -2x + 4 ⟹ 8 < -2x ⟹ -4 > x
x ∈ (-∞, -4)

8. [4 marks] Prove the following equation: 𝐋𝐨𝐠𝐛(π’™π’š)=𝐋𝐨𝐠𝐛(𝒙)βˆ’ 𝐋𝐨𝐠𝐛(π’š).
Assume b > 0, b β‰  1, x>0, y>0
(1) Let m = Logb(x) and n = Logb(y)
(2) Then x = bm and y = bn
(3) π‘₯𝑦 = π‘π‘šπ‘π‘›
(4) π‘₯𝑦 = bm-n
(5) Logb(π‘₯𝑦) = Logb(bm-n)
(6) Logb(π‘₯𝑦) = (m – n)Β·Logb(b)
(7) Logb(π‘₯𝑦) = m – n
(8) Logb(π‘₯𝑦) = Logb(x) – Logb(y)

About

Leave a reply

Captcha Click on image to update the captcha .

error: Content is protected !!