MATH 3270 ASSIGNMENT $# 1$ SOLUTIONS

- (1) Let p_n denote the n^{th} prime number. Prove that for every $n \in \mathbb{Z}^+$, $p_{n+1} \leq p_1 p_2 \cdots p_n + p_n$ 1. (Hint: use ideas from the proof that there are infinitely many primes.) $p_1p_2\cdots p_n+1$ leaves a remainder of 1 when divided by p_i for $1 \leq i \leq n$ and therefore is not divisible by p_i for $1 \leq i \leq n$. Therefore its prime factors are of the form p_j for $j > n$. Therefore $p_{n+1} \leq p_1 p_2 \cdots p_n + 1$.
- (2) Let a and n be positive integers such that $n > 1$ and $aⁿ 1$ is prime.
	- (a) Prove that $a = 2$. $a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + \cdots + a + 1)$ so if $a > 2$, then the two factors are greater than 1 so that $a^n - 1$ is composite– contradiction. Therefore $a = 2$.
	- (b) Prove that n must be prime. If $n = xy$ where x and y are greater than 1, then $a^{n} - 1 = (a^{x})^{y} - 1 = (a^{x} - 1)(a^{x(y-1)} + a^{x(y-2)} + \cdots + a^{x} + 1)$ where the two factors are greater than 1 and thus $aⁿ - 1$ is composite–contradiction. Therefore n must be prime.
- (3) (a) Find (1331, 2431) by finding the prime factorizations.
	- $1331 = 11³$ $2431 = 11 \times 13 \times 17$

Therefore $(1331, 2431) = 11$.

(b) Find (1331, 2431) by applying the Euclidean algorithm.

$$
2431 = 1331(1) + 1100
$$

\n
$$
1331 = 1100(1) + 231
$$

\n
$$
1100 = 231(4) + 176
$$

\n
$$
231 = 176(1) + 55
$$

\n
$$
176 = 55(3) + 11
$$

\n
$$
55 = 11(5)
$$

Therefore $(1331, 2431) = 11$.

- (c) Express $(1331, 2431)$ in the form $1331m + 2431n$.
	- $11 = 176 (3)55$ $= 176 - (3)(231 - 176(1)) = (-3)231 + (4)176$ $= (-3)231 + (4)(1100 - 231(4)) = (4)1100 - 19(231)$ $= (4)1100 - 19(1331 - 1100) = (-19)1331 + 23(1100)$ $= (-19)1331 + 23(2431 - 1331) = (23)2431 - (42)1331$
- (4) Let a and b be positive integers. Prove that $gcd(a, b) = lcm(a, b)$ if and only if $a = b$. Let $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$ be prime factorizations of a and b. Then

$$
gcd(a, b) = \prod_{i=1}^{k} p_i^{\min(a_i, b_i)}
$$

while

$$
lcm(a,b) = \prod_{i=1}^{k} p_i^{\max(a_i,b_i)}
$$

Therefore $gcd(a, b) = lcm(a, b)$ if and only if $min(a_i, b_i) = max(a_i, b_i)$ for $1 \le i \le k$. This is true if and only if $a_i = b_i$ for each $1 \le i \le k$ which is true if and only if $a = b$.

.

- (5) Prove that if $p > 3$ is prime, then $12[p^2 1]$. We need to show that 3 and 4 divide $p^2 - 1$. Since $p > 3$, p is not divisible by 3, so $p = 3k + 1$ or $3k + 2$. $(3k+1)^2 - 1 = 9k^2 + 6k$ is divisible by 3. $(3k+2)^2 - 1 = 9k^2 + 12k + 3$ is divisible by 3. Thus $3|p^2 - 1$. Since $p > 3$, p is not divisible by 2, so $p = 4k + 1$ or $4k + 3$. $(4k+1)^2 - 1 = 16k^2 + 8k$ is divisible by 4. $(4k+3)^2 - 1 = 16k^2 + 24k + 8$ is divisible by 4. Therefore $4|p^2-1$. Therefore $12|p^2-1$.
- (6) Bonus: Use the Euclidean algorithm to prove that $(a^m 1, a^n 1) = a^{(m,n)} 1$. WOLOG, assume $m \leq n$. Then $n = mq + r$ where $0 \leq r < m$. $q = \frac{m}{m}$ $\frac{n}{m}$. Then

$$
a^{n}-1 = (a^{m}-1)(a^{n-m} + a^{n-2m} + \cdots + a^{n-\lfloor \frac{n}{m} \rfloor m}) + a^{n-\lfloor \frac{n}{m} \rfloor m} - 1 = (a^{m}-1)(a^{n-m} + a^{n-2m} + \cdots + a^{n-qm}) + a^{n-1}.
$$

Thus if the Euclidean algorithm for m, n is:

$$
n = mq_1 + r_1
$$

\n
$$
m = r_1q_2 + r_2
$$

\n
$$
r_1 = r_2q_3 + r_3
$$

\n
$$
\dots = \dots
$$

\n
$$
r_{j-2} = r_{j-1}q_j + r_j
$$

\n
$$
r_{j-1} = r_jq_{j+1}
$$

where $(m, n) = r_j$, then the Euclidean algorithm for $a^m - 1$, $a^n - 1$ is:

$$
a^{n} - 1 = (a^{m} - 1)Q_{1} + a^{r_{1}} - 1
$$

\n
$$
a^{m} - 1 = (a^{r_{1}} - 1)Q_{2} + a^{r_{2}} - 1
$$

\n
$$
a^{r_{1}} - 1 = (a^{r_{2}} - 1)Q_{3} + a^{r_{3}} - 1
$$

\n... = ...
\n
$$
a^{r_{j-2}} - 1 = (a^{r_{j-1}} - 1)Q_{j} + a^{r_{j}} - 1
$$

\n
$$
a^{r_{j-1}} - 1 = (a^{r_{j}} - 1)Q_{j+1} = (a^{(m,n)} - 1)Q_{j+1}.
$$

Thus $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$.