MATH 3270 Assignment # 1 Solutions

- (1) Let p_n denote the n^{th} prime number. Prove that for every $n \in \mathbb{Z}^+$, $p_{n+1} \leq p_1 p_2 \cdots p_n + 1$. (Hint: use ideas from the proof that there are infinitely many primes.) $p_1 p_2 \cdots p_n + 1$ leaves a remainder of 1 when divided by p_i for $1 \leq i \leq n$ and therefore is not divisible by p_i for $1 \leq i \leq n$. Therefore its prime factors are of the form p_j for j > n. Therefore $p_{n+1} \leq p_1 p_2 \cdots p_n + 1$.
- (2) Let a and n be positive integers such that n > 1 and $a^n 1$ is prime.
 - (a) Prove that a = 2. $a^n - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + a + 1)$ so if a > 2, then the two factors are greater than 1 so that $a^n - 1$ is composite- contradiction. Therefore a = 2.
 - (b) Prove that n must be prime. If n = xy where x and y are greater than 1, then $a^n 1 = (a^x)^y 1 = (a^x 1)(a^{x(y-1)} + a^{x(y-2)} + \cdots + a^x + 1)$ where the two factors are greater than 1 and thus $a^n 1$ is composite-contradiction. Therefore n must be prime.
- (3) (a) Find (1331, 2431) by finding the prime factorizations.
 - $\begin{array}{l}
 1331 = 11^{3} \\
 2431 = 11 \times 13 \times 17
 \end{array}$
 - $2451 11 \land 10 \land 11$
 - Therefore (1331, 2431) = 11.
 - (b) Find (1331, 2431) by applying the Euclidean algorithm.

$$2431 = 1331(1) + 1100$$

$$1331 = 1100(1) + 231$$

$$1100 = 231(4) + 176$$

$$231 = 176(1) + 55$$

$$176 = 55(3) + 11$$

$$55 = 11(5)$$

Therefore (1331, 2431) = 11.

- (c) Express (1331, 2431) in the form 1331m + 2431n.
 - 11 = 176 (3)55= 176 - (3)(231 - 176(1)) = (-3)231 + (4)176 = (-3)231 + (4)(1100 - 231(4)) = (4)1100 - 19(231) = (4)1100 - 19(1331 - 1100) = (-19)1331 + 23(1100) = (-19)1331 + 23(2431 - 1331) = (23)2431 - (42)1331
- (4) Let a and b be positive integers. Prove that gcd(a,b) = lcm(a,b) if and only if a = b. Let $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$ be prime factorizations of a and b. Then

$$gcd(a,b) = \prod_{i=1}^{k} p_i^{\min(a_i,b_i)}$$

while

$$lcm(a,b) = \prod_{i=1}^{k} p_i^{\max(a_i,b_i)}$$

Therefore gcd(a, b) = lcm(a, b) if and only if $min(a_i, b_i) = max(a_i, b_i)$ for $1 \le i \le k$. This is true if and only if $a_i = b_i$ for each $1 \le i \le k$ which is true if and only if a = b.

- (5) Prove that if p > 3 is prime, then $12|p^2 1$. We need to show that 3 and 4 divide $p^2 - 1$. Since p > 3, p is not divisible by 3, so p = 3k + 1 or 3k + 2. $(3k+1)^2 - 1 = 9k^2 + 6k$ is divisible by 3. $(3k+2)^2 - 1 = 9k^2 + 12k + 3$ is divisible by 3. Thus $3|p^2 - 1$. Since p > 3, p is not divisible by 2, so p = 4k + 1 or 4k + 3. $(4k+1)^2 - 1 = 16k^2 + 8k$ is divisible by 4. $(4k+3)^2 - 1 = 16k^2 + 24k + 8$ is divisible by 4. Therefore $4|p^2 - 1$. Therefore $12|p^2 - 1$.
- (6) Bonus: Use the Euclidean algorithm to prove that $(a^m 1, a^n 1) = a^{(m,n)} 1$. WOLOG, assume $m \le n$. Then n = mq + r where $0 \le r < m$. $q = \lfloor \frac{n}{m} \rfloor$. Then

$$a^{n}-1 = (a^{m}-1)(a^{n-m}+a^{n-2m}+\dots+a^{n-\lfloor\frac{n}{m}\rfloor^{m}}) + a^{n-\lfloor\frac{n}{m}\rfloor^{m}} - 1 = (a^{m}-1)(a^{n-m}+a^{n-2m}+\dots+a^{n-qm}) + a^{r}-1.$$

Thus if the Euclidean algorithm for m, n is:

$$n = mq_{1} + r_{1}$$

$$m = r_{1}q_{2} + r_{2}$$

$$r_{1} = r_{2}q_{3} + r_{3}$$

$$\dots = \dots$$

$$r_{j-2} = r_{j-1}q_{j} + r_{j}$$

$$r_{j-1} = r_{j}q_{j+1}$$

where $(m, n) = r_j$, then the Euclidean algorithm for $a^m - 1, a^n - 1$ is:

$$a^{n} - 1 = (a^{m} - 1)Q_{1} + a^{r_{1}} - 1$$

$$a^{m} - 1 = (a^{r_{1}} - 1)Q_{2} + a^{r_{2}} - 1$$

$$a^{r_{1}} - 1 = (a^{r_{2}} - 1)Q_{3} + a^{r_{3}} - 1$$

$$\dots = \dots$$

$$a^{r_{j-2}} - 1 = (a^{r_{j-1}} - 1)Q_{j} + a^{r_{j}} - 1$$

$$a^{r_{j-1}} - 1 = (a^{r_{j}} - 1)Q_{j+1} = (a^{(m,n)} - 1)Q_{j+1}.$$

$$a^{m} - 1 = a^{(m,n)} - 1$$

Thus $(a^m - 1, a^n - 1) = a^{(m,n)} - 1.$